
 Visual Model for Structured data Extraction Using
Position Details

B.Venkat Ramana#1 A.Damodaram*2

#1 Department of CSE, MIPGS, Hyderabad-59
*2 Department of CSE, JNTUH, Hyderabad

Abstract-- The Web contains more online data which can be
searched through their web query interface. Extracting
structured data from deep Web pages is a challenging task
due to the underlying complicate structures of such pages.
Many techniques have been proposed to address this problem
of extraction, but all of them have some limitations due to
their dependency on the Web-page-programming-language.
This motivates us to seek a different way for deep Web data
extraction to overcome the limitations of previous works by
utilizing some interesting common visual features on the deep
Web pages. In this paper, a new vision-based approach that is
Web-page programming- language-independent is proposed.
This new method finds the matching pattern between the
attribute values of the two sites and ignores unwanted
portions of the attribute. Automatic pattern discovery along
with position details method with tree matching is used as
structured data extraction method. The main advantage of the
method is that it requires less human intervention. This
approach primarily utilizes the visual features on the deep
Web pages to implement deep Web data extraction, including
data record extraction and data item extraction. Experimental
results show that almost all extraction targets can be
successfully extracted by the developed extractor.

Keywords: Web Information Extraction, Data Mining, Pattern
Recognition, web content, record Extraction

I. INTRODUCTION
The World Wide Web has more and more online Web
databases which can be searched through their Web query
interfaces. The number of Web databases has reached 25
millions according to a recent survey .All the Web
databases make up the deep Web (hidden Web or invisible
Web). Often the retrieved information (query results) is
enwrapped in Web pages in the form of data records. These
special Web pages are generated dynamically and are hard
to index by traditional crawler based search engines, such
as Google and Yahoo. In this paper, we call this kind of
special Web pages as deep Web pages. Each data record on
the deep Web pages corresponds to an object. However,
processing the data records and data items in the machine
that is necessary in applications such as deep Web crawling
and metasearching, the structured data need to be extracted
from the deep Web pages. Here the structured data,
including data records and data items can be extracted
automatically from the deep Web pages.
Data mining (sometimes called data or knowledge
discovery) is the process of analyzing data from different
perspectives and summarizing it into useful information -
information that can be used to increase revenue, cuts costs,
or both. Data mining software is one of a number of
analytical tools for analyzing data. It allows users to
analyze data from many different dimensions or angles,
categorize it, and summarize the relationships identified.

Technically, data mining is the process of finding
correlations or patterns among dozens of fields in large
relational databases. Data are any facts, numbers, or text
that can be processed by a computer. Today, organizations
are accumulating vast and growing amounts of data in
different formats and different databases. For example,
analysis of retail point of sale transaction data can yield
information on which products are selling and when.
Information can be converted into knowledge about
historical patterns and future trends. For example, summary
information on retail supermarket sales can be analyzed in
light of promotional efforts to provide knowledge of
consumer buying behavior. Thus, a manufacturer or retailer
could determine which items are most susceptible to
promotional efforts.
In web mining web can be viewed as the largest database
available and presents a challenging task for effective
design and access. Thus, data mining applied to the Web
has the potential to be quite beneficial. Web mining is
mining of data related to the World Wide Web. This may
be the data actually present in Web Pages or data related to
Web activity. Web data can be classified into the following
classes:

 Content of actual Web pages
 Intrapage structure includes the HTML or XML

code for the page.
 Interpage structure is the actual linkage structure

between Web pages.
 Usage data that describe how Web pages are

accessed by visitors.
Web mining tasks can be divided into several classes. Web
content mining examines the content of Web pages as well
as results of Web searching. The content includes text as
well as graphics data. Web content mining is further
divided into Web page content mining and search results
mining. The Web page content mining is traditional
searching of Web pages via content, while the search
results mining is a further search of pages found from a
previous search. Thus, some mining activities have been
built on top of traditional search engines, using their result
as the data to be mined. With Web structure mining,
information is obtained from the actual organization of
pages on the Web. Content mining is similar to the work
performed by basic IR techniques, but it usually goes
farther than simply employing keyword searching. For
example clustering may be applied to Web pages to
identify similar pages. The intra page structure includes
links within the page as well as the code (HTML, XML) for
the page. Web usage mining looks at logs of Web access.
General access pattern tracking is a type of usage mining
that locks at a history of Web pages visited. This usage may

B.Venkat Ramana et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4256 - 4260

4256

be general or may be targeted to specific usage or users.
For Example, patterns can be clustered based on their
similarity. This in turn can be used to cluster users into
groups based on similar access behavior. Web usage
mining is a process of extracting useful information from
server logs i.e. user’s history. Web usage mining is the
process of finding out what users are looking for on the
Internet. Some users might be looking at only textual data,
whereas some others might be interested in multimedia
data. Web content mining is the process to discover useful
information from text, image, audio or video data in the
web. Web content mining sometimes is called web text
mining, because the text content is the most widely
researched area. Web structure mining is the process of
using graph theory to analyze the node and connection
structure of a web site. According to the type of web
structural data, web structure mining can be divided into
two kinds:

 Extracting patterns from hyperlinks in the web: a
hyperlink is a structural component that connects
the web page to a different location.

 Mining the document structure: analysis of the
tree-like structure of page structures to describe
HTML or XML tag usage.

The deep Web refers to World Wide Web content that is
not part of the surface Web, which is indexed by standard
search engines. In analogy to search engines over the
"crawlable" web, we argue that one way to unlock the Deep
Web is to employ a fully automated approach to extracting,
indexing, and searching the query-related information-rich
regions from dynamic web pages. Extracting the interesting
information from a Deep Web site requires many things:
including scalable and robust methods for analyzing
dynamic web pages of a given web site, discovering and
locating the query-related information-rich content regions,
and extracting itemized objects within each region. By full
automation, we mean that the extraction algorithms should
be designed independently of the presentation features or
specific content of the web pages, such as the specific ways
in which the query-related information is laid out or the
specific locations where the navigational links and
advertisement information are placed in the web pages. The
Deep Web comprises all information that resides in
autonomous databases behind portals and information
providers' web front-ends. Web pages in the Deep Web are
dynamically-generated in response to a query through a
web site's search form and often contain rich content.
Data Extraction from Web Extractors Web even those web
sites with some static links that are "crawlable" by a search
engine often have much more information available only
through a query interface. Unlocking this vast deep web
content presents a major research challenge. A Web
crawler is a computer program that browses the World
Wide Web in a methodical, automated manner or in an
orderly fashion. Other terms for Web crawlers are ants,
automatic indexers, bots, Web spiders, Web robots, or—
especially in the FOAF community—Web scutters. This
process is called Web crawling or spidering. The behavior
of a Web crawler is the outcome of a combination of
policies:

 a selection policy that states which pages to
download,

 a re-visit policy that states when to check for
changes to the pages,

 a politeness policy that states how to avoid
overloading Web sites, and

 a parallelization policy that states how to
coordinate distributed Web crawlers.

Objective of this work is to explore the visual regularity of
the data records and data items on deep Web pages and
propose a novel vision-based approach, Vision-based Data
Extractor (ViDE), to extract structured results from deep
Web pages automatically. ViDE is primarily based on the
visual features human users can capture on the deep Web
pages while also utilizing some simple non-visual
information such as data types and frequent symbols to
make the solution more robust. ViDE consists of two main
components, Vision based Data Record extractor (ViDRE)
and Vision-based Data Item extractor (ViDIE). By using
visual features for data extraction, ViDE avoids the
limitations of those solutions that need to analyze complex
Web page source files. In Section II describes the Data
Records Extraction, Section III contains the Data item
Extraction Section IV contains Visual Wrapper Generation
Section V describes about conclusion Section VI contains
Future Works.

II. DATA RECORDS EXTRACTION
Data record extraction aims to discover the boundary of
data records and extract them from the deep Web pages. An
ideal record extractor should achieve the following: 1) all
data records in the data region are extracted and 2) for each
extracted data record, no data item is missed and no
incorrect data item is included. Instead of extracting data
records from the deep Web page directly, we first locate the
data region, and then, extract data records from the data
region. PF1 and PF2 indicate that the data records are the
primary content on the deep Web pages and the data region
is centrally located on these pages. The data region
corresponds to a block in the Visual Block tree. We locate
the data region by finding the block that satisfies the two
position features. Each feature can be considered as a rule
or a requirement. Though very simple, this method can find
the data region in the Visual Block tree accurately and
efficiently.
Each data record corresponds to one or more sub trees in
the Visual Block tree, which are just the child blocks of the
data region. So, we only need to focus on the child blocks
of the data region. In order to extract data records from the
data region accurately, two facts must be considered. First,
there may be blocks that do not belong to any data record,
such as the statistical information (e.g., about 2,038
matching results for java) and annotation about data records
(e.g., 1, 2, 3, 4, 5 (Next)). These blocks are called noise
blocks in this paper. Noise blocks may appear in the data
region because they are often close to the data records.
According to LF2, noise blocks cannot appear between data
records. They always appear at the top or the bottom of the
data region. Second, one data record may correspond to one
or more blocks in the Visual Block tree, and the total

B.Venkat Ramana et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4256 - 4260

4257

number of blocks in which one data record contains is not
fixed.
Data record extraction is to discover the boundary of data
records based on the LF and AF features. We achieve this
in the following three phases:
Phase 1: Noise Blocks Filtering
Because noise blocks are always at the top or bottom, we
check the blocks located at the two positions according to
LF1. If a block at these positions is not aligned flush left, it
will be removed as a noise block. This step does not
guarantee the removal of all noise blocks.
Phase 2: Blocks Clustering
The remaining blocks in the data region are clustered based
on their appearance similarity. Since there may be three
kinds of information in data records, i.e., images, plain text,
and link text, the appearance similarity between blocks is
computed from the three aspects. For images, we care
about the size; for plain text and link text, we care about the
shared fonts. Intuitively, if two blocks are more similar on
image size and font, they should be more similar in
appearance.
Phase 3: Blocks Regrouping
The clusters obtained in the previous step do not
correspond to data records. On the contrary, the blocks in
the same cluster all come from different data records.
According to AF2, the blocks in the same cluster have the
same type of contents of the data records. The blocks need
to be regrouped such that the blocks belonging to the same
data record form a group. Our basic idea of blocks
regrouping is as follows: According to CF1, the first data
item in each data record is always mandatory. Clearly, the
cluster that contains the blocks for the first items has the
maximum number of blocks possible; let n be this
maximum number. It is easy to see that if a cluster contains
n blocks, these blocks contain mandatory data items. Our
regrouping method first selects a cluster with n blocks and
uses these blocks as seeds to form data records. Next, given
a block b, we determine which record b belongs to
according to CF2.
a. Algorithm Block Regrouping
Input: C1, C2, Cm; a group of clusters generated by blocks
clustering from a given sample deep web page P
Output: G1, G2… Gm; each of them corresponds to a data
record on P
Begin
//Step 1: sort the blocks in Ci according to their positions in
the page (from top to bottom and then from left to right)
1 for each cluster Ci do
2 for any two blocks bi,j and bi,k in Ci //1≤j<k≤|Ci|
3 if bi,j and bi,k are in different lines on P,and bi,k is above
bi,j
4 bi,j >bi,k; //exchange their orders in Ci;
5 else if bi,j and bi,k are in the same line on P, and bi,k is in
front of bi,j
6 bi,j < bi,k;
7 end until no exchange occurs;
8 from the minimum-bounding rectangle Reci for Ci;
//Step 2: initialize n groups, and n is the number of data
records on P
9 Cmax= {Ci| |Ci|=max {|C1|,|C2|,…,|Cm|}}; // n=|Cmax|
10 for each block bmax,j in Cmax

11 Initialize group Gi;
12 Put bmax,I into Gi;
//Step 3: put the blocks into the right groups, and each
group corresponds to a data record
13 For each cluster Ci
14 if Reci overlaps with Recmax on P
15 if Reci is ahead of (behind) Recmax
16 for each blocks bi,j in Ci
17 find the nearest block bmax,k in Cmax that is behind
(ahead of) bi,j on the web page; place bi,j into group Gi; End

III. DATA ITEM EXTRACTION
A data record can be regarded as the description of its
corresponding object, which consists of a group of data
items and some static template texts. In real applications,
these extracted structured data records are stored (often in
relational tables) at data item level and the data items of the
same semantic must be placed under the same column.
When introducing CF, we mentioned that there are three
types of data items in data records: mandatory data items,
optional data items, and static data items. We extract all
three types of data items. Note that static data items are
often annotations to data and are useful for future
applications, such as Web data annotation. Below, we focus
on the problems of segmenting the data records into a
sequence of data items and aligning the data items of the
same semantics together. Note that data item extraction is
different from data record extraction; the former focuses on
the leaf nodes.
3.1 Data Record Segmentation
AF3 indicates that composite data items cannot be
segmented any more in the Visual Block tree. So, given a
data record, we can collect its leaf nodes in the Visual
Block tree in left to right order to carry out data record
segmentation. Each composite data item also corresponds
to a leaf node. We can treat it as a regular data item
initially, and then, segment it into the real data items with
the heuristic rules mentioned in AF3 after the initial data
item alignment. The Visual Block tree, while the latter
focuses on the child blocks of the data region in the Visual
Block tree.
3.2 Data Item Alignment
CF1 indicates that we cannot align data items directly due
to the existence of optional data items. It is natural for data
records to miss some data items in some domains. For
example, some books have discount price, while some do
not. Data item alignment focuses on the problem of how to
align the data items of the same semantic together and also
keep the order of the data items in each data record. In the
following, we first define visual matching of data items,
and then, propose an algorithm for data item alignment.
3.3 Visual Matching of Data Items
AF2 indicates that if two data items from different data
records belong to the same semantic, they must have
consistent font and position, including both absolute
position and relative position. The first four lines of the
algorithm say that two data items are matched only if they
have the same absolute position in addition to having the
same font. Here, absolute position is the distance between
the left side of the data region and the left side of a data
item. When two data items do not have the same absolute

B.Venkat Ramana et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4256 - 4260

4258

position, they can still be matched if they have the same
relative position. For match on relative position, the data
items immediately before the two input data items should
be matched.
3.3.1 Algorithm-Data Item Matching
Input: item1, item2: two data items
Output: matched or unmatched: the match result (Boolean)
Begin
1 if (font (item1) ≠ font (item2))
2 Return unmatched;
3 if (position (item1) =position (item2))
4 Return matched;
5 if (itemp1 and itemp2 are matched) //itemp1 and itemp2
are the data items immediately in front of item1 and item2
respectively
6 Return matched;
7 else
8 Return unmatched;
9 End

3.4 Data Item Alignment
CF2 says that the order of data items in data records is
fixed. Thus, each data record can be treated as a sequence
of data items. We can utilize this feature to align data
items. Our goal is to place the data items of the same
semantic in the same column. If an optional data item does
not appear in a data record, we will fill the vacant position
with a predefined blank item. Based on this insight, we
propose a multi alignment algorithm that can process all
extracted data records holistically step by step. The basic
idea of this algorithm is described as follows: Initially, all
the data items are unaligned. We align data items by the
order in their corresponding data records. When we
encounter optional data items that do not appear in some
data records, these vacant positions will be filled with the
predefined blank item. This ensures that all data records are
aligned and have the same number of data items at the end.

3.4.1 Algorithm-Data Item Alignment
Input: a set of extracted data records {n|1≤j≤n}
Output: a set of data records {n|1≤j≤n} with all the data
items aligned
Begin
1. Currentitemset=φ;
2. Currentitemcluster=φ;
3. //put the first unaligned data item of each n into
currentItemSet:
//Itemiu(i) refers to the first unaligned item of th ith data
record
Currentitemset↔itemiu(i)(1≤i≤n) ;
4. While currentItemSet≠φ
5. use the data item matching algorithm to group the data
items
In the currentItemSet into k clusters {ci|1≤i≤k} (k≤n);
6. for each cluster ci for each r1 that does not have a data
item in ci
7. if Itemju(j)+kis matched with data items in ci
8. Log position k;
9. else
10. Log position 0;
11. Pi=max value of these logged position for Ci;

12./*Till now, each cluster Ci has a positionPi*/ if any
PL==0
currentCluster=CL
13.Else
14 current cluster=cl whose pl is max{p1,p2,….pk};
 for each rj whose item I U(j) is in current cluster cl
15 Remove itemiU(j) from current item set;
16 If itemiU(j)-1 exists in rj
17 Put itemiU(i)+1 into current item set;
18 For each rj that has no item in current cluster cl
19 Insert a blank item ahead of itemiU(j) in rj;
20 U(j)++;
21 end

IV. VISUAL WRAPPER GENERATION
ViDE has two components: ViDRE and ViDIE. There are
two problems with them. First, the complex extraction
processes are too slow in supporting real-time applications.
Second, the extraction processes would fail if there is only
one data record on the page. Since all deep Web pages from
the same Web database share the same visual template,
once the data records and data items on a deep Web page
have been extracted, we can use these extracted data
records and data items to generate the extraction wrapper
for the Web database so that new deep Web pages from the
same Web database can be processed using the wrappers
quickly without reapplying the entire extraction process.
Our wrappers include data record wrapper and data item
wrapper. They are the programs that do data record
extraction and data item extraction with a set of parameter
obtained from sample pages. For each Web database, we
use a normal deep Web page containing the maximum
number of data records to generate the wrappers. The
wrappers of previous works mainly depend on the
structures or the locations of the data records and data items
in the tag tree, such as tag path. In contrast, we mainly use
the visual information to generate our wrappers. Note that
some other kinds of information are also utilized to
enhance the performances of the wrappers, such as the data
types of the data items and the frequent symbols appearing
in the data items. But they are easy to obtain from the Web
pages. We describe the basic ideas of our wrappers below.
4.1 Vision-Based Data Record Wrapper
Given a deep Web page, vision-based data record wrapper
first locates the data region in the Visual Block tree, and
then, extracts the data records from the child blocks of the
data region. After the data region R on a sample deep Web
page P from site S is located by ViDRE, we save five
parameters values (x; y; w; h; l), where (x; y) form the
coordinate of R on P, w and h are the width and height of
R, and l is the level of R in the Visual Block tree. Given a
new deep Web page P_ from S, we first check the blocks at
level l in the Visual Block tree for P_. The data region on
P_ should be the block with the largest area overlap with R
on P_. The overlap area can be computed using the
coordinates and width/height information. Data record
extraction. For each record, our visual data record wrapper
aims to find the first block of each record and the last block
of the last data record (denoted as blast). To achieve this
goal, we save the visual information (the same as the
information used in (1)) of the first block of each data

B.Venkat Ramana et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4256 - 4260

4259

record extracted from the sample page and the distance
(denoted as d) between two data records. For the child
blocks of the data region in a new page, we find the first
block of each data record by the visual similarity with the
saved visual information. Next, blast on the new page
needs to be located. Based on our observation, in order to
help the users differentiate data records easily, the vertical
distance between any two neighboring blocks in one data
record is always smaller than d and the vertical distance
between blast and its next block is not smaller than d.
Therefore, we recognize the first block whose distance with
its next block is larger than d as blast.
4.2 Vision-Based Data Item Wrapper
The data alignment algorithm groups data items from
different data records into columns or attributes such that
data items under the same column have the same semantic.
Table 6 lists useful information about each attribute
obtained from the sample page that can help determine
which attribute a data item belongs to. The basic idea of our
vision-based data item wrapper is described as follows:
Given a sequence of attributes fa1; a2; . . . ; a ng obtained
from the sample page and a sequence of data items item1;
item2; . . . ; item mg obtained from a new data record, the
wrapper processes the data items in order to decide which
attribute the current data item can be matched to. For item i
and aj, if they are the same on f, l, and d, their match is
recognized. The wrapper then judges whether itemiþ1 and
ajþ1 are matched next, and if not, it judges i temi and ajþ1.
Repeat this process until all data items are matched to their
right attributes. Note that if an attribute on a new page did
not appear on the sample page, the data item of the attribute
cannot be matched to any attribute. To avoid such a
problem, several sample pages may be used to generate the
wrapper. This can increase the chance that every attribute
appears on at least one of these sample pages.

V. CONCLUSION
With the flourish of the deep Web, users have a great
opportunity to benefit from such abundant information in it.
In general, the desired information is embedded in the deep
Web pages in the form of data records returned by Web
databases when they respond to users queries. Therefore, it
is an important task to extract the structured data from the
deep Web pages. Here we focused on the structured Web
data extraction problem, including data record extraction
and data item extraction. First, surveyed previous works on
Web data extraction and investigated their inherent
limitations. The visual information of Web pages can help

us implement Web data extraction. Based on our
observations of a large number of deep Web pages, it is
identified that a set of interesting common visual features
that are useful for deep Web data extraction. Based on
these visual features, we proposed a novel vision-based
approach to extract structured data from deep Web pages,
which can avoid the limitations of previous works. The
main trait of this vision-based approach is that it primarily
utilizes the visual features of deep Web pages.

VI. FUTURE WORK
There are still some remaining issues and we plan to
address them in future. ViDE can only process deep web
pages containing one data region, while there is a
significant number of multidata-region deep web pages. We
intend to propose vision based approach to tackle HTML
dependent and its performance. The efficiency of ViDE can
be improved. In the current ViDE, the visual information of
web pages is obtained by calling the programming AIPs of
IE, which is time consuming process. To address this
problem, we intend to develop a a set of new AIPs to obtain
the visual information directly from web pages.This
process of extracting Deep Web Pages can be further
improved by using the algorithm “EXTENDED
COCITATION ALGORITHM”.

REFERENCES
[1]. G.O. Arocena and A.O. Mendelzon, ―WebOQL: Restructuring

Documents, Databases, and Webs, Proc. Int’l Conf. Data
Eng.(ICDE), pp. 24-33, 1998.

[2]. D. Buttler, L. Liu, and C. Pu, ―A Fully Automated Object
Extraction System for the World Wide Web, Proc. Int’l
Conf.Distributed Computing Systems (ICDCS), pp. 361-370, 2001.

[3]. D. Cai, X. He, J.-R. Wen, and W.-Y. Ma, ―Block-Level Link
Analysis, Proc. SIGIR, pp. 440-447, 2004.

[4]. D. Cai, S. Yu, J. Wen, and W. Ma, ―Extracting Content Structure
for Web Pages Based on Visual Representation, Proc. Asia Pacific
Web Conf. (APWeb), pp. 406-417, 2003.

[5]. C.-H. Chang, M. Kayed, M.R. Girgis, and K.F. Shaalan, ―A Survey
of Web Information Extraction Systems, IEEE Trans. Knowledge
and Data Eng., vol. 18, no. 10, pp. 1411-1428, Oct. 2006.

[6]. C.-H. Chang, C.-N. Hsu, and S.-C. Lui, ―Automatic Information
Extraction from Semi-Structured Web Pages by Pattern Discovery,
Decision Support Systems, vol. 35, no. 1, pp. 129-147, 2003.

[7]. V. Crescenzi and G. Mecca, ―Grammars Have Exceptions,
Information Systems, vol. 23, no. 8, pp. 539-565, 1998.

[8]. V. Crescenzi, G. Mecca, and P. Merialdo, ―RoadRunner: Towards
Automatic Data Extraction from Large Web Sites, Proc. Int’l Conf.
Very Large Data Bases (VLDB), pp. 109-118, 2001.

[9]. S. Oswalt Manoj, Nisha Soms and N.V. Shibu -Visual Architecture
based Web Information Extraction, International Journal of Data
Mining, Vol. 1, Special Issue, December 2011.

B.Venkat Ramana et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4256 - 4260

4260

